Agricultural Product Classifier for Quality Control based on Machine Learning and Industry 4.0

Authors

  • Carlos Andrés Guaillazaca González Escuela Superior Politécnica de Chimborazo
  • Valeria Hernandez A. STEAM-UP Groups

DOI:

https://doi.org/10.47187/perspectivas.vol2iss2.pp21-28.2020

Keywords:

Automation, Artificial Intelligence, KNN, MQTT, Agricultural Technology, CNN

Abstract

Currently, empirical techniques in Ecuadorian agricultural production are not enough to achieve quality changes with food safety standards and thus meet the demand of an international market. This work presents a system capable of supervising, classifying, and controlling the quality of products in the agricultural sector, by applying soft computing techniques and machine learning algorithms that affect the identification of images in real time. The research will implement classification algorithms of nearest K neighbors to label the products according to their quality and send the reports in real time to a web application using the MQTT protocol. The employed products in this study were bananas, oranges, green bananas, and apples. The obtained results allow to determine the minimum number of images required for training the identification models and the identification error rates during the validation stage.

Métricas

References

«Poca tecnificación reduce competencia en el agro - NOV. 09, 2004 - Economía - Historicos - EL UNIVERSO», nov. 09, 2004.

«Información Agroambiental y Tecnificación Agropecuaria |», 2018. https://www.ecuadorencifras.gob.ec/informacion-agroambiental/ (accedido may 28, 2020).

M. T. T. Livio, «LAS TAXONOMÍAS SOBRE LOS AGENTES ECONÓMICOS EN EL AGRO ECUATORIANO 1965-2015. CONTEXTO, SUPUESTOS TEÓRICOS, APORTES Y LÍMITES.», UCE, Quito, Ecuador, 2018.

«La tecnificación es una de las alternativas a la crisis arrocera», El Comercio.

S. Sherwood y M. Paredes, «El futuro como producto del presente: caso de estudio sobre la modernización agrícola en Carchi, Ecuador.» Grupo FARO, 2013, Accedido: may 28, 2020. [En línea]. Disponible en: https://n9.cl/g8g9.

H. Jácome Estrella y K. King, Eds., Estudios industriales de la micro, pequeña y mediana empresa, 1. ed. Quito, Ecuador: FLACSO Ecuador, 2013.

«Artificial Intelligence and Environmental Decision Support Systems», p. 15.

S. Russell, P. Norvig, J. M. Corchado Rodríguez, y L. Joyanes Aguilar, Inteligencia artificial: un enfoque moderno. Madrid: Pearson Educación, 2011.

M. Wooldridge y N. R. Jennings, «Intelligent agents: theory and practice», Knowl. Eng. Rev., vol. 10, n.o 2, pp. 115-152, jun. 1995, doi: 10.1017/S0269888900008122.

S. Franklin y A. Graesser, «Is It an agent, or just a program?: A taxonomy for autonomous agents», en Intelligent Agents III Agent Theories, Architectures, and Languages, Berlin, Heidelberg, 1997, pp. 21-35.

P. H. Winston, «Artificial intelligence: a perspective», 1990, p. 11, [En línea]. Disponible en: https://www.semanticscholar.org/paper/Artificial-intelligence%3A-a-perspective-Winston/75d03d764d147b751de9fb835fb5935aa08e0013.

I. Dzitac, F. G. Filip, y M.-J. Manolescu, «Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh», Int. J. Comput. Commun. Control, vol. 12, n.o 6, p. 748, dic. 2017, doi: 10.15837/ijccc.2017.6.3111.

J. R. Hagerty, «Lotfi Zadeh Tried to Adapt Math and Computers to a World of Ambiguity», Wall Street Journal, sep. 22, 2017.

I. A. Basheer y M. Hajmeer, «Artificial neural networks: fundamentals, computing, design, and application», J. Microbiol. Methods, vol. 43, n.o 1, pp. 3-31, dic. 2000, doi: 10.1016/S0167-7012(00)00201-3.

D. Mehta, X. Zhao, E. A. Bernal, y D. J. Wales, «Loss surface of XOR artificial neural networks», Phys. Rev. E, vol. 97, n.o 5, p. 052307, may 2018, doi: 10.1103/PhysRevE.97.052307.

M. van Gerven y S. Bohte, «Editorial: Artificial Neural Networks as Models of Neural Information Processing», Front. Comput. Neurosci., vol. 11, 2017, doi: 10.3389/fncom.2017.00114.

R. F. López y J. M. F. Fernández, Las Redes Neuronales Artificiales. Netbiblo, 2008.

C. G. Cambronero y I. G. Moreno, «ALGORITMOS DE APRENDIZAJE: KNN & KMEANS», p. 8.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, y M. Hoffmann, «Industry 4.0», Bus. Inf. Syst. Eng., vol. 6, n.o 4, pp. 239-242, ago. 2014, doi: 10.1007/s12599-014-0334-4.

A. Stanford-Clark y H. L. Truong, «MQTT For Sensor Networks (MQTT-SN) Protocol Specification», p. 28, 1999.

«Keras | TensorFlow Core», TensorFlow, 2019. https://www.tensorflow.org/guide/keras?hl=es (accedido may 17, 2020).

Published

2020-07-05

How to Cite

[1]
C. A. Guaillazaca González and V. Hernandez A., “Agricultural Product Classifier for Quality Control based on Machine Learning and Industry 4.0: Array”, Perspectivas, vol. 2, no. 2, pp. 21–28, Jul. 2020.

Issue

Section

Artículos arbitrados

Similar Articles

You may also start an advanced similarity search for this article.