Low-Frequency Noise Measurements Application for Analysis of Thermal and Electric Stress Effects on Power Devices
DOI:
https://doi.org/10.47187/perspectivas.vol2iss2.pp7-12.2020Keywords:
Electronic Noise, Electrical Characterization, Power Devices Reliability, Low Frequency Noise MeasurementAbstract
This document presents the study of the effect of thermal and electrical stress on power semiconductor devices through low-frequency noise measurements. A High Temperature Reverse Bias test (HTRB) was applied to the power devices, determining their electrical characteristics before and after the HTRB. The tools used for this study were a variable voltage source up to 1200V designed for the application of electrical stress, a temperature module consisting of a mini-heater and a control module designed for the application of thermal stress together with the Keithley 4200-SCSn parameter analyzer for current-voltage characterization and a low frequency noise measurement system for characterization of conductive channels in electronic devices. The results indicate a higher level of flicker noise in the considered MOSFETs after stress application that is related to changes in the threshold voltage because of the applied stress, directly correlating these parameters.
Métricas
References
C. Ciofi y B. Neri, “Low-frequency noise measurements as a characterization tool for degradation phenomena in solid-state device”, J. Phys. Appl. Phys., vol. 33, núm. 21, p. R199, 2000, doi: 10.1088/0022-3727/33/21/201.
C. Pace et al., “A New Effective Methodology for Semiconductor Power Devices HTRB Testing”, IEEE Trans. Ind. Electron., vol. 64, núm. 6, pp. 4857–4865, jun. 2017, doi: 10.1109/TIE.2017.2669882.
V. Smet et al., “Ageing and Failure Modes of IGBT Modules in High-Temperature Power Cycling”, IEEE Trans. Ind. Electron., vol. 58, núm. 10, pp. 4931–4941, oct. 2011, doi: 10.1109/TIE.2011.2114313.
B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century”, IEEE Trans. Ind. Electron., vol. 60, núm. 7, pp. 2638–2651, jul. 2013, doi: 10.1109/TIE.2012.2203771.
M. J. Deen, “Low-frequency noise in semiconductor devices - state-of-the-art and future perspectives plenary paper”, en 2017 International Conference on Noise and Fluctuations (ICNF), jun. 2017, pp. 1–4, doi: 10.1109/ICNF.2017.7985925.
T. Kimoto y J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, 1a ed. Wiley-IEEE Press, 2014.
H. Yu y T. Duan, Gallium nitride power devices, 1a ed. Pan Stanford Publishing, 2017.
Y. Yang, B. Duan, S. Yuan, y H. Jia, “Novel Developments and Challenges for the SiC Power Devices”, Adv. Silicon Carbide Devices Process., sep. 2015, doi: 10.5772/61123.
M. Dalla Vecchia, S. Ravyts, G. Van den Broeck, y J. Driesen, “Gallium-Nitride Semiconductor Technology and Its Practical Design Challenges in Power Electronics Applications: An Overview”, OpenAIRE - Explore, 2019. https://explore.openaire.eu/search/publication?articleId=doajarticles::273a5ce3d6a6a30d14d13b614c553e7d (consultado may 17, 2020).
C. Ciofi y B. Neri, “Low frequency noise measurements: Applications, methodologies and instrumentation”, Proc. SPIE - Int. Soc. Opt. Eng., vol. 5113, may 2003, doi: 10.1117/12.489652.
S. Zafar, A. Kumar, E. Gusev, y E. Cartier, “Threshold voltage instabilities in high-/spl kappa/ gate dielectric stacks”, IEEE Trans. Device Mater. Reliab., vol. 5, núm. 1, pp. 45–64, mar. 2005, doi: 10.1109/TDMR.2005.845880.
D. B. Habersat, R. Green, y A. J. Lelis, “Feasibility of SiC threshold voltage drift characterization for reliability assessment in production environments”, en 2016 European Conference on Silicon Carbide Related Materials (ECSCRM), sep. 2016, pp. 1–1, doi: 10.4028/www.scientific.net/MSF.897.509.
J. Wuerfl et al., “Reliability issues of GaN based high voltage power devices”, Microelectron. Reliab., vol. 51, núm. 9, pp. 1710–1716, sep. 2011, doi: 10.1016/j.microrel.2011.07.017.
B. Hull et al., “Reliability and stability of SiC power mosfets and next-generation SiC MOSFETs”, en 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, oct. 2014, pp. 139–142, doi: 10.1109/WiPDA.2014.6964641.
R. J. Kaplar, D. R. Hughart, S. Atcitty, J. D. Flicker, S. DasGupta, y M. J. Marinella, “Performance and Reliability Characterization of 1200 V Silicon Carbide Power MOSFETs at High Temperatures”, Addit. Conf. Device Packag. HiTEC HiTEN CICMT, vol. 2013, núm. HITEN, pp. 000275–000280, ene. 2013, doi: 10.4071/HITEN-WP11.
M. R. Hasan, A. Motayed, M. S. Fahad, y M. V. Rao, “Fabrication and comparative study of DC and low frequency noise characterization of GaN/AlGaN based MOS-HEMT and HEMT”, J. Vac. Sci. Technol. B, vol. 35, núm. 5, p. 052202, ago. 2017, doi: 10.1116/1.4998937.
J. G. Tartarin, S. Karboyan, F. Olivié, G. Astre, L. Bary, y B. Lambert, “I-DLTS, electrical lag and low frequency noise measurements of trapping effects in AlGaN/GaN HEMT for reliability studies”, en 2011 6th European Microwave Integrated Circuit Conference, oct. 2011, pp. 438–441.
H. Rao y G. Bosman, “Device reliability study of AlGaN/GaN high electron mobility transistors under high gate and channel electric fields via low frequency noise spectroscopy”, Microelectron. Reliab., vol. 50, núm. 9, pp. 1528–1531, sep. 2010, doi: 10.1016/j.microrel.2010.07.073.
J. G. Tartarin, G. Astre, S. Karboyan, T. Noutsa, y B. Lambert, “Generation-recombination traps in AlGaN/GaN HEMT analyzed by time-domain and frequency-domain measurements: Impact of HTRB stress on short term and long term memory effects”, en 2013 IEEE International Wireless Symposium (IWS), abr. 2013, pp. 1–4, doi: 10.1109/IEEE-IWS.2013.6616840.
Á. B. Uscátegui, “El Ruido 1/f”, Ingeniería, vol. 5, núm. 1, pp. 28–36, 2000.
C. D. Motchenbacher y J. A. Connelly, Low noise electronic system design. Wiley, 1993.
M. von Haartman y M. Östling, Low-Frequency Noise in Advanced MOS Devices. Springer Netherlands, 2007.
O. Marinov, “The low frequency noise in HFETs estimates the effect of electrical stress”, Microelectron. Reliab., vol. 40, núm. 11, pp. 1959–1963, nov. 2000, doi: 10.1016/S0026-2714(00)00065-2.
X. Y. Chen, A. Pedersen, y A. D. van Rheenen, “Effect of electrical and thermal stress on low-frequency noise characteristics of laser diodes”, Microelectron. Reliab., vol. 41, núm. 1, pp. 105–110, ene. 2001, doi: 10.1016/S0026-2714(00)00201-8.
C. Kayis, C. Y. Zhu, M. Wu, X. Li, Ü. Özgür, y H. Morkoç, “Low-frequency noise measurements of electrical stress in InAlN/GaN and AlGaN/GaN heterostructure field-effect transistors”, en Gallium Nitride Materials and Devices VI, mar. 2011, vol. 7939, p. 79392G, doi: 10.1117/12.875723.
O. Marinov, M. J. Deen, V. Loukanov, y V. Velikov, “The low frequency noise in reverse biased rectifier diodes”, IEEE Trans. Electron Devices, vol. 49, núm. 1, pp. 184–187, ene. 2002, doi: 10.1109/16.974768.
O. Marinov y M. J. Deen, “Low-Frequency Noise Partition of Asymmetric MOS Transistors Operating in Linear Regime”, IEEE Electron Device Lett., vol. 30, núm. 8, pp. 840–842, ago. 2009, doi: 10.1109/LED.2009.2023382.
C. Claeys, M. Aoulaiche, M. G. C. Andrade, M. Rodrigues, J. A. Martino, y E. Simoen, “(Invited) Low Frequency Noise Performance of State-of-the-Art and Emerging CMOS Devices”, ECS Trans., vol. 45, núm. 3, pp. 567–580, abr. 2012, doi: 10.1149/1.3700921.
F. Sandoval Ibarra, N. Melchor Hernández, y S. Ortega Cisneros, “Análisis, modelado y simulación del ruido flicker en transistores MOS”, Acta Univ., vol. 23, núm. 5, 2013, Consultado: nov. 04, 2018. [En línea]. Disponible en: http://www.redalyc.org/resumen.oa?id=41629559003.
A. A. Balandin, “Low-frequency 1/f noise in graphene devices”, Nat. Nanotechnol., vol. 8, núm. 8, pp. 549–555, ago. 2013, doi: 10.1038/nnano.2013.144.
D. M. Fleetwood, “$1/f$Noise and Defects in Microelectronic Materials and Devices”, IEEE Trans. Nucl. Sci., vol. 62, núm. 4, pp. 1462–1486, ago. 2015, doi: 10.1109/TNS.2015.2405852.
V. E. I. E. U. Chye, “Universal multichannel system for low frequency noise measurement”, en 2017 International Siberian Conference on Control and Communications (SIBCON), jun. 2017, pp. 1–5, doi: 10.1109/SIBCON.2017.7998532.
M. A. Belaïd, K. Ketata, K. Mourgues, M. Gares, M. Masmoudi, y J. Marcon, “Reliability study of power RF LDMOS device under thermal stress”, Microelectron. J., vol. 38, núm. 2, pp. 164–170, feb. 2007, doi: 10.1016/j.mejo.2006.08.004.
K. Cho et al., “Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS2 Field Effect Transistors”, ACS Nano, vol. 7, núm. 9, pp. 7751–7758, sep. 2013, doi: 10.1021/nn402348r.
L. Yang y A. Castellazzi, “High temperature gate-bias and reverse-bias tests on SiC MOSFETs”, Microelectron. Reliab., vol. 53, núm. 9, pp. 1771–1773, sep. 2013, doi: 10.1016/j.microrel.2013.07.065.
“Keithley 4200A-SCS Parameter Analyzer | Tektronix”. https://www.tek.com/keithley-4200a-scs-parameter-analyzer (consultado feb. 26, 2020).
A. Ortiz Conde, “A review of recent MOSFET threshold voltage extraction methods”, Microelectron. Reliab., vol. 42, núm. 4–5, pp. 583–596, abr. 2002, doi: 10.1016/S0026-2714(02)00027-6.
S. Kasap y P. Capper, Eds., Springer Handbook of Electronic and Photonic Materials, 2a ed. Springer International Publishing, 2017.
R. M. Barcia Macías, “Desarrollo de un sistema de medición de ruido de baja frecuencia para caracterización de canales conductivos en dispositivos electrónicos.”, Escuela Superior Politécnica de Chimborazo, Riobamba, 2019.
J. Lutz, H. Schlangenotto, U. Scheuermann, y R. D. Doncker, Semiconductor Power Devices: Physics, Characteristics, Reliability. Berlin Heidelberg: Springer-Verlag, 2011.
J. L. Hernandez y C. Pace, “Embedded mini-Heater design for power loss remote measurement and thermal runaway control on power devices for Accelerated Life Testing”, en 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), oct. 2016, pp. 1–6, doi: 10.1109/ETCM.2016.7750864.
A. Toro, “Implementación de un prototipo de fuente de alimentación de 1200v de baja corriente para pruebas de estrés eléctrico en transistores de potencia”, Escuela Superior Politécnica de Chimborazo, Riobamba, 2020.
J. W. Evans y J. Y. Evans, Eds., Product Integrity and Reliability in Design. London: Springer-Verlag, 2001.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Sofia Berrones, Ronald Marcelo Barcia Macías, Mildred Cajas Buenaño, Andres Morocho Caiza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The authors of the manuscripts will retain their copyright on their articles published in Pespectivas Journal. These rights allow the authors to present their manuscripts in public, prepare derivative works, reproduce them physically by printing and distribute them on their social or research networks. These rights will remain unchanged as long as the authors respect the publication and free access policy of Perspectivas Journal.
Publication Rights
Perspectivas Journal reserves all first publication rights on each of the articles that the authors have sent to its review and publication process. It implies that authors will only exercise their copyright if they state the source and origin of the publication correctly, mainly when they distribute, share, present, or use their articles' total or partial content.