PID Controller Tuning for Speed Control of a Direct Current Motor using Genetic Algorithm

Authors

  • Ronald Marcelo Barcia Macías Escuela Superior Politécnica de Chimborazo
  • Sofia Elizabeth Berrones Asqui Escuela Superior Politécnica de Chimborazo
  • Julio-Ariel Romero-Pérez Universitat Jaume I
  • Oscar Miguel-Escrig Universitat Jaume I

DOI:

https://doi.org/10.47187/perspectivas.vol1iss2.pp31-37.2019

Keywords:

Genetic Algorithm, PID Control, Artificial Intelligence, Optimal Control

Abstract

This document presents the development of a genetic algorithm for optimizing the gains of a PID (proportional, integral, derivative) controller applied to the speed control of a direct current motor. The algorithm was developed in Python code. It produces a good performance with few iterations due to the generation of the initial population based on the tuning rules of Ziegler & Nichols. The controller obtained through the application of the genetic algorithm is compared with the conventional tuning methods of Ziegler and Nichols, Cohen-Coon and AMIGO, in terms of establishment time, maximum overshoot and robustness. The obtained results allow to conclude that the maximum overshoot and the establishment time are minimized by using the controller obtained through the genetic algorithm, which in turn has a better robustness compared to the controllers obtained with the other methods.

Métricas

References

J. Jantzen, Foundations of Fuzzy Control: A Practical Approach. New York, UNITED KINGDOM: John Wiley & Sons, Incorporated, 2013.

I. M. Mujtaba y M. A. Hussain, Application of Neural Networks and Other Learning Technologies in Process Engineering. Singapore, SINGAPORE: Imperial College Press, 2001.

C. R. Alavala, Fuzzy Logic and Neural Networks: Basic Concepts & Application. Daryaganj, INDIA: New Age International, 2008.

J. Ghaboussi, Soft Computing in Engineering. Milton, UNITED KINGDOM: Chapman and Hall/CRC, 2018.

P. Chou, T. Hwang, y T. Chang, “Use of Soft Computing Components to Improve Transient/Steady-State of Control Systems”, en Advances in Communication Systems and Electrical Engineering, X. Huang, Y.-S. Chen, y S.-I. Ao, Eds. Boston, MA: Springer US, 2008, pp. 375–391.

A. K. Singh, R. Singh, y R. K. Arya, “Approximation of Optimized Fuzzy Logic Controller for Shunt Active Power Filter”, en Complex System Modelling and Control Through Intelligent Soft Computations, Q. Zhu y A. T. Azar, Eds. Cham: Springer International Publishing, 2015, pp. 571–595.

N. Bounar, A. Boulkroune, y F. Boudjema, “Fuzzy Adaptive Controller for a DFI-Motor”, en Complex System Modelling and Control Through Intelligent Soft Computations, Q. Zhu y A. T. Azar, Eds. Cham: Springer International Publishing, 2015, pp. 87–110.

S. Bouallègue, F. Toumi, J. Haggège, y P. Siarry, “Advanced Metaheuristics-Based Approach for Fuzzy Control Systems Tuning”, en Complex System Modelling and Control Through Intelligent Soft Computations, Q. Zhu y A. T. Azar, Eds. Cham: Springer International Publishing, 2015, pp. 627–653.

M. Andalib Sahnehsaraei, M. J. Mahmoodabadi, M. Taherkhorsandi, K. K. Castillo-Villar, y S. M. Mortazavi Yazdi, “A Hybrid Global Optimization Algorithm: Particle Swarm Optimization in Association with a Genetic Algorithm”, en Complex System Modelling and Control Through Intelligent Soft Computations, Q. Zhu y A. T. Azar, Eds. Cham: Springer International Publishing, 2015, pp. 45–86.

A. Aguado y A. Cipriano, “Identificación en lazo cerrado y ajuste de reguladores mediante algoritmos genéticos”, Rev. Iberoam. Automática E Informática Ind. RIAI, vol. 6, núm. 1, pp. 20–30, ene. 2009.

G. K. McMillan, Tuning and Control Loop Performance, Cuarta Edición. New York, UNITED STATES: Momentum Press, 2014.

M. King, Process Control: a Practical Approach, 2da Edición. New York, UNITED KINGDOM: John Wiley & Sons, Incorporated, 2016.

K. J. Åström y T. Hägglund, Control PID Avanzado. Pearson Educación, 2009.

K. Ogata, Ingeniería de Control Moderna, 5ta Edición. Madrid: Pearson Educación, S. A., 2010.

B. Nagaraj y P. Vijayakumar, “Tuning of a PID Controller using Soft Computing Methodologies Applied to Moisture Control in Paper Machine”, Intell. Autom. Soft Comput., vol. 18, núm. 4, pp. 399–411, ene. 2012.

S. Balamurugan, R. J. Xavier, y A. E. Jeyakumar, “Control of Heavy-duty Gas Turbine Plants for Parallel Operation Using Soft Computing Techniques”, Electr. Power Compon. Syst., vol. 37, núm. 11, pp. 1275–1287, oct. 2009.

N. Kassarwani, J. Ohri, y A. Singh, “Design and performance of dynamic voltage restorer using genetic algorithm”, Int. J. Electron., vol. 105, núm. 1, pp. 88–103, ene. 2018.

S. K. Suman, “Improvement of Control System Responses Using GAs PID Controller”, Int. J. Ind. Manuf. Syst. Eng., vol. 2, núm. 2, p. 11, abr. 2017.

O. Y. Mahmood Al-Rawi, “Enhancing Control Systems Response Using Genetic PID Controllers”, Genet. Algorithms Appl., mar. 2012.

N. P. Adhikari y A. Gupta, “PID Controller Tuning Using Soft Computing Techniques”, en Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), 2013, pp. 277–284.

S. Umme Hani, K. Hassan, R. Hazari, y M. Abdul Mannan, “Speed Control of Separately Excited DC Motor with Efficiency Maximization Propensity”, Am. Int. Univ. - Bangladesh J. Sci. Eng., vol. 14, núm. 1, ago. 2015.

A. A. Azman, M. H. F. Rahiman, N. N. Mohammad, M. H. Marzaki, M. N. Taib, y M. F. Ali, “Modeling and comparative study of PID Ziegler Nichols (ZN) and Cohen-Coon (CC) tuning method for Multi-tube aluminum sulphate water filter (MTAS)”, en 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2017, pp. 25–30.

F. Padula y A. Visioli, “Tuning rules for optimal PID and fractional-order PID controllers”, J. Process Control, vol. 21, núm. 1, pp. 69–81, ene. 2011.

P. P. Cruz, Inteligencia artificial con aplicaciones a la ingeniería. México: Alfaomega Grupo Editor, S. A., 2011.

python-control.org, “Python Control Systems Library — Python Control Systems Library dev documentation”, 22-dic-2018. [En línea]. Disponible en: https://python-control.readthedocs.io/en/latest/. [Consultado: 28-ene-2019].

R. Vilanova y V. M. Alfaro, “Control PID robusto: Una visión panorámica”, Rev. Iberoam. Automática E Informática Ind. RIAI, vol. 8, núm. 3, pp. 141–158, jul. 2011.

Published

2019-07-17

How to Cite

[1]
R. M. Barcia Macías, S. E. Berrones Asqui, J.-A. Romero-Pérez, and O. Miguel-Escrig, “PID Controller Tuning for Speed Control of a Direct Current Motor using Genetic Algorithm: Array”, Perspectivas, vol. 1, no. 2, pp. 31–37, Jul. 2019.

Issue

Section

Artículos arbitrados